ایزومتری
در ریاضیات ایزومتری (انگلیسی: Isometry) یا طولپا به تبدیلی در فضاهای متری گفته میشود که فاصله نقاط را حفظ میکند. این تبدیلها معمولاً تناظر دوسویه هستند.
تعریف
فرض کنیم X و Y فضاهای متری با متریکهای dX و dY باشند. یک تابع ƒ : X → Y در صورتی ایزومتری تلقی میشود اگر برای هر a,b ∈ X رابطه زیر برقرار باشد.
مثالها
جستارهای وابسته
منابع
- ↑ (Coxeter 1969، ص. 46)
- ↑ Beckman, F. S.; Quarles, D. A., Jr. (1953). "On isometries of Euclidean spaces" (PDF). Proceedings of the American Mathematical Society. 4: 810–815. doi:10.2307/2032415. MR 0058193.
Let T be a transformation (possibly many-valued) of() into itself.
Letbe the distance between points p and q of, and let Tp, Tq be any images of p and q, respectively.
If there is a length a> 0 such thatwhenever, then T is a Euclidean transformation ofonto itself.