قضیه مقدار میانی
در آنالیز ریاضی، قضیه مقدار میانی یا قضیه بولتسانو بیان میکند که برای هر تابع پیوسته روی بازهٔ ، به ازای هر مقدار که میان و و یا برابر آنان باشد، حداقل یک عدد مانند در بازه وجود دارد که .
حالتی از این قضیه نخستین بار توسط برنارد بولتسانو اثبات شد که برای وجود ریشه بین دو مقدار مثبت و منفی بیان میشود: اگر برای تابع ، پیوسته روی ، داشته باشیم ، آنگاه وجود دارد حداقل یک مقدار چون به طوری که .
قضیه ای با نام مشابه برای انتگرال ها وجود ندارد. این قضیه را نباید با قضیه مقدار میانگین اشتباه بگیریم.
جستارهای وابسته
پانویس
منابع
- Protter, M.H.; Protter, P.E. (1988). Calculus with Analytic Geometry (به انگلیسی). Jones and Bartlett. Retrieved 2015-05-09.
- Eriksson, K.; Estep, D.; Johnson, C. (2013). Applied Mathematics: Body and Soul: Volume 1: Derivatives and Geometry in IR3. SpringerLink: BĂźcher (به انگلیسی). Springer Berlin Heidelberg. Retrieved 2015-05-09.