عدد گنگ
در ریاضیات، اعداد گنگ (Irrational Numbers)، تمام اعداد حقیقی را شامل میشوند که گویا نباشند؛ یعنی، اعداد گنگ را نمیتوان به صورت نسبت دو عدد صحیح نوشت. هنگامی که نسبت طولهای دو پارهخط عددی گنگ باشد، آن پارهخطها را میتوان به عنوان «مقایسه ناپذیر» توصیف نمود، یعنی هیچ اندازه «مشترکی» ندارند، یا به عبارتی دیگر هیچ طولی (یا «اندازه»ای)، هرچقدر هم کوچک باشد، وجود ندارد که بتوان از آن جهت بیان طول دو پارهخط مد نظر استفاده نمود، به گونهای که آن پارهخطها به صورت مضارب صحیحی از آن طول باشند.
برخی از اعداد گنگ شامل این مواردند: عدد
اعداد گنگ را همچون تمام اعداد حقیقی میتوان برحسب ارزش مکانی (مثلاً در دستگاه دهدهی) بیان نمود. اعشار اعداد گنگ پایان ناپذیر است و دنباله متناوبی تشکیل نمیدهند. به عنوان مثال، نمایش دهدهی عدد
اعداد گنگ را به کمک کسرهای مسلسل پایان ناپذیر و بسیاری از طرق دیگر نیز میتوان بیان نمود.
از اثبات کانتور در مورد ناشمارا بودن اعداد حقیقی و شمارا بودن اعداد گویا نتیجه میشود که تقریباً تمام اعداد حقیقی گنگ اند.
تاریخچه
ابوکامل ریاضیدان مسلمان قرن نهم میلادی اولین کسی بود که در آثار خود اعداد گنگ را معرفی کرده و بکار برد.
اعداد گنگ معروف
رادیکال دو
شاید اولین عدد گنگی که بشر کشف کرد
عدد فی
نسبت طلایی یا عدد فی در ریاضیات هنگامی است که «نسبت بخش بزرگتر به بخش کوچکتر، برابر با نسبت کل به بخش بزرگتر» باشد. فی، نخستین حرف از نام «فیدیاس»، پیکرتراش زبدهٔ یونان باستان است که به احتمال زیاد این نسبت عددی را دهها سال پیش از اقلیدس، در شیوهٔ هنریاش لحاظ میکردهاست. بسیاری از مراجع علمی، حرف یونانی φ یا عدد فی را برای این عدد انتخاب کردهاند. مقدار عددی عدد طلایی برابر بهطور تقریبی برابر است با ۱٫۶۱۸۰۳۳۹۸۸۷
مصریان، سالها قبل از میلاد از این نسبت آگاه بودهاند و آن را در ساخت اهرام مصر رعایت کردهاند. بسیاری از الگوهای طبیعی در بدن انسان این نسبت را دارا هستند. نسبت طول ضلع پنج پر منتظم به طول ضلع پنج ضلعی منتظم برابر همین عدد است. روانشناسان هم بر این باورند زیباترین مستطیل به دید انسان، مستطیلی است که نسبت طول به عرض آن برابر عدد طلایی باشد. دلیل این امر آن است که این نسبت در شبکیه چشم انسان رعایت شده و هر مستطیلی که این نسبت را دارا باشد به چشم انسان زیبا میآید.
عدد پی
عدد پی (۳٫۱۴۱۵ = π) از اعداد گنگ است. عدد پی در بسیاری از معادلاتی که با نوسان و تناوب سر و کار دارند ظاهر میشود. بنا به شواهد تاریخی نخستین بار عدد پی توسط بابلیان (۳٫۱۲۵) و مصریان (۳٫۱۶۰۴) در ۱۹۰۰ سال قبل از میلاد محاسبه شد که هر دو تا یک رقم اعشار صحیح است. همچنین در متون هندی این عدد ۳٫۱۳۹ تقریب زده شده که حدوداً تا دو رقم اعشار صحیح است. اولین کسی که عدد پی را با دقت قابل قبول تخمین زد، ارشمیدس در قرن سه قبل از میلاد بود. او به کمک روش تقریب دایره با چند ضلعی های منتظم و به کمک ۹۶ ضلعی منتظم عدد پی را ۳٫۱۴۱۹ تخمین زد که تا سه رقم اعشار صحیح است. همچنین دانشمندی چینی بنام زو چانگ ژی در قرن ۵ میلادی عدد پی را ۳٫۱۴۱۵۹۲۹۲ محاسبه کرد که تا ۶ رقم اعشار صحیح است. غیاث الدین جمشید کاشانی دانشمند و ریاضی دان ایرانی نیز عدد پی را تا 17 رقم اعشار بدست آورد که تنها در رقم هفدهم با محاسبات امروزی تفاوت داشت. تا هزاره دوم میلادی کمتر از ده رقم اعشار عدد پی بهطور صحیح محاسبه شده بود (به کمک عدد پی تا ۱۱ رقم اعشار میتوان محیط کره زمین را با دقت میلیمتر تخمین زد). رفته رفته و با پیشرفت ریاضیات و ابداع روش سریهای نامتناهی تخمینهای بهتر و بهتری برای عدد پی بدست آمد، بطوریکه امروزه با استفاده از رایانههای شخصی میتوان این عدد را تا میلیاردها رقم اعشار صحیح تخمین زد. اگر میخواهید عدد p را تا ده رقم اعشار به خاطر بسپارید تعداد حروف کلماتِ این شعر به شما کمک خواهد کرد: خرد و بینش و آگاهی دانشمندان ره سرمنزل مقصود بما آموزد= ۳/۱۴۱۵۹۲۶۵۳۵
عدد نپر
از پرکاربردترین عددهای گنگ، عدد نپر (۲٫۷۱۸۲ = e) است. کشف این عدد منتسب به جان نپر، دانشمند اسکاتلندی و معرف لگاریتم است. البته اهمیت این عدد بیشتر مرهون کارهای لئونارد اویلر، دانشمند سوئیسی، است. چه بسیاری نیز معتقدند انتخاب حرف e برای عدد نپر بخاطر اولین حرف از نام خانوادگی اویلر بودهاست. البته عدهای نیز میگویند این حرف نخستین حرف کلمهٔ نمایی (exponential) است. در واقع توابع نمایی به صورت f(x)=a^x هستند و در بین تمام اعداد حقیقی ممکنی که میتوانند بهجای a قرار گیرند عدد نپر تنها عددیاست که باعث میشود تابع نمایی در نقطه صفر شیبی دقیقاً برابر با یک داشته باشد (مشتق تابع e^x برابر است با e^x و لذا شیب این تابع در صفر برابر است با e^0=۱). عدد نپر در جاهای دیگر هم ظاهر میشود. مثلاً فرض کنید در بانک مبلغ یک دلار قرار دادهاید و بانک به شما ۱۰۰ درصد سود در سال پرداخت میکند یعنی در پایان سال شما دو دلار خواهید داشت (n=۱). حال اگر بانک بهجای صد در صد در سال شش ماه اول ۵۰ درصد سود پرداخت کند (یک و نیم دلار در پایان شش ماه) و در شش ماه دوم نیز ۵۰ درصد سود پرداخت کند (به ازای یک و نیم دلار پسانداز شما) در پایان سال ۱٫۵+۰٫۷۵=۲٫۲۵ دلار خواهید داشت (n=۲). اگر این بار بانک هر سه ماه یک بار به شما ۲۵ درصد سود پرداخت کند در پایان سال مبلغ ۱٫۲۵+۰٫۳۱۲۵+۰٫۳۹۰۶۲۵+۰٫۴۸۸۲۸۱=۲٫۴۴۱۴۱ در حساب خود خواهید داشت (n=۴). اگر این روند ادامه پیدا کند یعنی بانک در تعداد دفعات بیشتری به شما سود کمتری پرداخت کند و این تعداد دفعات یعنی n به بینهایت میل کند شما در پایان سال به اندازه ۲٫۷۱۸۲ = e دلار در بانک خواهید داشت. همچنین اگر احتمال برنده شدن شما در یک بازی n^ -1 باشد و شما این بازی را n بار انجام دهید و n به سمت بینهایت میل کند احتمال اینکه شما هر n بازی را ببازید برابر است با e^ -1.
جستارهای وابسته
|
منابع
- ↑ The 15 Most Famous Transcendental Numbers. by Clifford A. Pickover. URL retrieved 24 October 2007.
- ↑ http://www.mathsisfun.com/irrational-numbers.html; URL retrieved 24 October 2007.
- ↑ Weisstein, Eric W. "Irrational Number". MathWorld. URL retrieved 26 October 2007.
- ↑ Cantor, Georg (1955) [1915]. Philip Jourdain (ed.). Contributions to the Founding of the Theory of Transfinite Numbers. New York: Dover. ISBN 978-0-486-60045-1.
- ↑ Sesiano, Jacques (2000). "Islamic mathematics". In Selin, Helaine; D'Ambrosio, Ubiratàn (eds.). Mathematics Across Cultures: The History of Non-Western Mathematics. Springer. p. 148.