لیتیم
لیتیوم (Lithium، از یونانی lithos به معنی سنگ) با نماد شیمیایی Li یک فلز قلیایی نقرهای-سفید و نرم با عدد اتمی ۳ است. این عنصر در شرایط استاندارد دما و فشار سبکترین فلز و کم چگالیترین عنصر جامد است. مانند دیگر فلزهای قلیایی، لیتیم هم بسیار واکنش پذیر و آتشگیر است به همین دلیل بیشتر آن را زیر روغن صنعتی یا نفت نگاه میدارند. اگر بر روی آن برشی پدید آید، بخش بریده شده دارای جلای فلزی خواهد بود اما به دلیل واکنشپذیری زیاد آن خیلی زود با رطوبت هوا واکنش میدهد، هوا باعث خوردگی آن میشود و به رنگ نقرهای تیره مایل به خاکستری و سپس سیاه در میآید. به دلیل واکنشپذیری بالای لیتیم، هرگز نمیتوان آن را به صورت عنصر آزاد در طبیعت پیدا کرد. بلکه همواره در بخشی از یک ترکیب شیمیایی که بیشتر یونی است، پیدا میشود. لیتیم در چندتا از کانیهای پگماتیتی یافت میشود اما از آنجایی که در آب حل میشود، به صورت یون در آب اقیانوسها و به صورت نمک در آبها و رس دیده میشود. در رویکرد تجاری، لیتیم را از برقکافت آمیختهای از لیتیم کلرید و پتاسیم کلرید بدست میآورند.
لیتیم | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
تلفظ | /ˈlɪθiəm/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ظاهر | نقرهای-سفید (در این نگاره شناور در آب) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
جرم اتمی استاندارد (Ar، استاندارد) | ( ۶٫۹۳۸، ۶٫۹۹۷) conventional: ۶٫۹۴ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
لیتیم در جدول تناوبی | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
عدد اتمی (Z) | 3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
گروه | 1: هیدروژن و فلزهای قلیایی | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
دوره | دوره 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
بلوک | بلوک-s | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
دسته | Alkali metal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
آرایش الکترونی | [He] 2s | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2, 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ویژگیهای فیزیکی | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
فاز در STP | جامد | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نقطه ذوب | 453.69 K (180.54 °C, 356.97 °F) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نقطه جوش | 1615 K (1342 °C, 2448 °F) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
چگالی (near r.t.) | 0.534 g/cm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
در حالت مایع (at m.p.) | 0.512 g/cm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نقطه بحرانی | (extrapolated) 3223 K, 67 MPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
حرارت همجوشی | 3.00 kJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
آنتالپی تبخیر | 147.1 kJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ظرفیت حرارتی مولی | 24.860 J/(mol·K) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
فشار بخار
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ویژگیهای اتمی | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
عدد اکسایش | +1 (a strongly basic اکسید) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
الکترونگاتیوی | مقیاس پائولینگ: 0.98 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
انرژی یونش |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
شعاع اتمی | empirical: 152 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
شعاع کووالانسی | pm 128±7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
شعاع واندروالسی | 182 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
خط طیف نوری لیتیم | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
دیگر ویژگی ها | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ساختار بلوری | مکعبی مرکزپُر | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
سرعت صوت thin rod | 6000 m/s (at 20 °C) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
انبساط حرارتی | 46 µm/(m·K) (at 25 °C) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
رسانندگی گرمایی | 84.8 W/(m·K) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
رسانش الکتریکی | 92.8 n Ω·m (at 20 °C) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
رسانش مغناطیسی | پارامغناطیس | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مدول یانگ | 4.9 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مدول برشی | 4.2 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مدول حجمی | 11 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
سختی موس | 0.6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
شماره ثبت سیایاس | 7439-93-2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ایزوتوپهای لیتیم | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Li content may be as low as 3.75% in natural samples. Li would therefore have a content of up to 96.25%. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
لیتیم و ترکیبهای آن کاربردهای فراوانی دارند از آن جمله در شیشه و سرامیک پایدار در برابر گرما، آلیاژهای با مقاومت بالا نسبت به وزن که در فضاپیماها کاربرد دارد، باتریهای لیتیم و لیتیم-یون. کاربردهای یاد شده بیش از نیمی از لیتیم تولیدی را از آن خود میکند.
در ظاهر اینطور به نظر میرسد که لیتیم هیچ نقشی در زندگی حیوانها و گیاهان ندارد و آنها بدون لیتیم هم میتوانند زنده بمانند، اما در عمل در همهٔ اندامهای زنده میتوان ردپای بسیار کم رنگ لیتیم را پیدا کرد. یون لیتیم که در قالب نمکهای گوناگون پیدا میشود بر روی اعصاب انسان اثر میگذارد و لیتیم میتواند به عنوان دارو در درمان اختلال دوقطبی کمک کند.
ویژگیها
تاریخچه لیتیم را (واژه یونانی lithos به معنی سنگ)، "Johann Arfvedson" در سال ۱۸۱۷ کشف کرد. "Arfvedson" این عنصر جدید را هنگامیکه در سوئد مشغول تجزیه و تحلیل بود، با مواد معدنی خاصی کشف نمود. "Christian Gmelin" در سال ۱۸۱۸، اولین کسی بود که شاهد قرمزرنگ شدن نمک لیتیم در شعله آتش بود. اما هر دوی این افراد، در جداسازی این عنصر از نمکش ناکام ماند.
این عنصر را برای اولین بار "W.T. Brande" و "Humphrey Davy" با استفاده از الکترولیز اکسید لیتیم جدا کردند. تولید تجاری فلز لیتیم در سال ۱۹۲۳ به وسیلهٔ شرکت آلمانی Metallgesellschaft AG و با استفاده از الکترولیز کلرید لیتیم و کلرید پتاسیم مذاب محقق گشت. اطلاعات کلی لیتیم، عنصر شیمیایی است، با نشان Li و عدد اتمی ۳ که در جدول تناوبی به همراه فلزات قلیایی در گروه ۱ قرار دارد. این عنصر در حالت خالص، فلزی نرم و به رنگ سفید خاکستری میباشد که بهسرعت در معرض آب و هوا اکسید شده، کدر میگردد. لیتیم، سبکترین عنصر جامد بوده، عمدتاً در آلیاژهای انتقال حرارت، در باتریها بکار رفته، در بعضی از تثبیتکنندههای حالت mood stabilizers مورد استفاده قرار میگیرد. خصوصیات قابل توجه لیتیم، سبکترین فلزات و دارای چگالی به اندازه نصف چگالی آب است. این عنصر همانند همه فلزات قلیایی بهراحتی در آب واکنش داده، به سبب فعالیتش هرگز در طبیعت به صورت آزاد یافت نمیشود. با این وجود، هنوز هم واکنشپذیری آن از سدیم کمتر است. وقتی لیتیم روی شعله قرار گیرد، رنگ زرشکی جالبی تولید میکند، اما اگر به شدت بسوزد، شعلههایی سفید درخشان ایجاد میکند. همچنین لیتیم، عنصری تکظرفیتی است. کاربردها لیتیم، بهعلت گرمای ویژهاش (بالاتر از تمامی جامدات) در انتقال حرارت مورد استفاده قرار میگیرد. بهعلت خاصیت electrochemical، ماده مهمی در آند باتریها محسوب میشود. سایر کاربردها:
نمکهای لیتیم، مثل کربنات لیتیم (Li2CO3) و سیترات لیتیم، تثبیتکنندههای حالت هستند که در درمان بیماریهای متضاد نقش دارند.
لیتیم کلرید و لیتیم برمید، بهشدت رطوبت را جذب میکنند، لذا در خشککنندهها بهکرات کاربرد دارند.
استارات لیتیم، یک ماده لیزکننده کلی در دمای بالا و برای تمامی مقاصد بهشمار میرود.
لیتیم، عاملی آلیاژ ساز است که در تولید ترکیبات آلی مورد استفاده قرار گرفته، نیز دارای کاربردهای اتمی میباشد.
گاهی اوقات از لیتیم در ساخت شیشه و سرامیک استفاده میگردد، مانند شیشههای ۲۰۰ اینچی تلسکوپ در Mt. Palomat در فضاپیماها و زیردریائی، برای خارج کردن دیاکسید کربن از هوا از هیدروکسید لیتیم استفاده میشود.
از آلیاژ این فلز با آلومینیوم، کادمیم، مس و منگنز در ساخت قطعات هواپیماهای بلند پرواز استفاده میگردد. پیدایش لیتیم بسیار پراکندهاست، اما بهعلت واکنشپذیری زیادی که دارد، در طبیعت به صورت آزاد وجود ندارد و همیشه به صورت ترکیب با یک یا چند عنصر یا ترکیب دیگر دیده میشود. این فلز بخش کوچکی از کلیه سنگهای آذرین را تشکیل داده، نیز در بسیاری از شورابهای طبیعی وجود دارد.
فیزیکی و اتمی
مانند دیگر فلزهای قلیایی، لیتیم تنها یک الکترون در لایهٔ ظرفیت دارد که دوست دارد آن را به آسانی از دست دهد و تبدیل به کاتیون شود. به همین دلیل لیتیم یک رسانای خوب گرما و جریان برق است و واکنشپذیری بسیار بالایی دارد. با این وجود از نظر واکنشپذیری در میان فلزهای قلیایی رتبهٔ آخر را دارد. این واکنشپذیری کم نسبت به دیگر عنصرهای گروه، به دلیل نزدیکی زیاد الکترونهای لایهٔ ظرفیت به هستهٔ اتم لیتیم است. چون دو الکترون باقیمانده در تراز ابر الکترونی 1s جای میگیرند که تراز انرژی بسیار پایینی دارد برای همین در پیوندهای شیمیایی شرکت نمیکنند.
فلز لیتیم آنقدر نرم است که با چاقو بریده شود. هنگامی که بریده شد یک سطح نقرهای-سفید از آن دیده میشود. این رویه خیلی زود اکسید میشود و به رنگ خاکستری در میآید. لیتیم دارای یکی از پایینترین نقطهٔ ذوبها (۱۸۰ °C) در میان همهٔ فلزها است در حالی که در میان فلزهای قلیایی، بالاترین نقطهٔ ذوب و جوش را دارد.
لیتیم سبکترین فلز جدول تناوبی است با چگالی نزدیک به ۰٫۵۳۴ g/cm و یکی از سه فلزی است که روی آب و حتی روغن، شناور میماند (دو فلز دیگر سدیم و پتاسیم]] است). لیتیم کم چگالیترین عنصری است که در دمای اتاق گاز نیست. سبکترین عنصر پس از لیتیم، پتاسیم است که بیش از ۶۰٪ آن (۰٫۸۶۲ g/cm) چگالی دارد. همچنین اگر هلیم و هیدروژن را کنار بگذاریم، لیتیم کم چگالیترین عنصر در میان دیگر عنصرهای جامد و مایع است. برای نمونه لیتیم تنها ۲/۳ نیتروژن مایع (0.808 g/cm) چگالی دارد.
ضریب انبساط گرمایی لیتیم دو برابر آلومینیم و نزدیک به چهار برابر آهن است. میتوان گفت لیتیم دارای بالاترین ظرفیت گرمایی در میان همهٔ عنصرهای جامد است. لیتیم در فشار معمولی، در دمایی پایینتر از ۴۰۰ μK ابررسانا میشود و در فشارهای بالا، بیش از ۲۰ گیگاپاسکال، در دمای بیش از ۹ کلوین ابررسانا میگردد. در دمای زیر ۷۰ کلوین، لیتیم هم مانند سدیم دچار استحاله مارتنزیتی میشود. همچنین در دمای ۴٫۲ کلوین دارای دستگاه بلوری لوزیپهلو (با ۹ لایهٔ فاصلهٔ تکرارشونده) اما در دماهای بالاتر شکل دستگاه بلوری اش به دستگاه بلوری مکعبی وجوهمرکزپُر و سپس به دستگاه بلوری مکعبی مرکزپُر دگرگون میشود. در دمای هلیم مایع (۴ کلوین) ساختار بلوری لوزیپهلو از همه بیشتر دیده شدهاست. در فشارهای بالا، چندشکلیهای گوناگونی از لیتیم گزارش شدهاست.
لیتیم به دلیل ظرفیت گرمایی بسیار بالایی که نسبت به دیگر عنصرهای جامد دارد بیشتر در سردکنندهها برای جابجایی گرما به کار گرفته میشود.
شیمیایی و ترکیبها
لیتیم به سادگی با آب واکنش میدهد ولی انرژی بسیار کمتری نسبت به دیگر فلزهای قلیایی در این واکنش پدید میآید. محصولهای این واکنش گاز هیدروژن و هیدروکسید لیتیم در محلول آبی است. به دلیل واکنش بالای لیتیم با آب، همواره آن را زیر پوشش هیدروکربنهای گرانرو مانند وازلین نگه میدارند. فلزهای قلیایی سنگین تر را میتوان در مواد با گرانروی پایینتر، مانند روغن صنعتی نگهداری کرد، لیتیم به اندازهٔ کافی سنگین نیست تا بتواند بهطور کامل پایینتر از سطح این مایعها قرار گیرد. در هوای مرطوب لیتیم به سرعت اکسید میشود و یک لایهٔ سیاه بر روی آن ساخته میشود. این پوشش سیاه رنگ، هیدروکسید لیتیم (LiOH و LiOH·H۲O)، لیتیم نیتریت (Li۳N) و لیتیم کربنات (Li۲CO۳، نتیجهٔ یک واکنش دوم میان LiOH و CO۲) است.
هنگامی که لیتیم در برابر آتش قرار گیرد، ترکیبهای آن رنگ لاکی (قرمز سیر) از خود نشان میدهند اما درصورتی که این ماده آتش گیرد، شعله به رنگ نقرهای در خواهد آمد. هرگاه لیتیم در تماس با آب یا بخار آن، قرار گیرد شعلهور میشود و با اکسیژن میسوزد. لیتیم به خودی خود آتشگیر است و توان انفجار دارد به ویژه هنگامی که در هوای آزاد و در تماس با آب قرار گیرد. با این حال این ویژگی لیتیم نسبت به دیگر فلزهای قلیایی، از همه کمرنگ تر است. واکنش لیتیم با آب در دمای معمولی، به تندی صورت میگیرد اما آسیبرسان نیست و هیدروژن تولیدی به خودی خود آتش نمیگیرد. مانند دیگر فلزهای قلیایی، خاموش کردن آتش لیتیم کمی دشوار است و حتماً باید از پودرهای خاموشکننده آتش، ردهٔ D کمک گرفت (خاموشکنندههای دستی آتش را نگاه کنید). لیتیم تنها فلزی است که در دمای معمولی و شرایط معمولی با نیتروژن واکنش میدهد.
لیتیم یک سری همانندیهای قطری هم با منیزیم دارد. این دو فلز دارای شعاع اتمی و یونی یکساناند. همانندیهای شیمیایی این دو عبارتند از: ساختن نیترید در اثر واکنش با N۲، ساختن اکسید (Li
۲O)) و پراکسید (Li
۲O
۲) در هنگام سوختن با O۲، پدیدآوردن نمکهایی با ویژگی حل شدنیِ همانند و ناپایداری گرمایی کربنات و نیترید آنها. این فلز در دمای بالا با گاز هیدروژن واکنش میدهد و لیتیم هیدرید (LiH) را تولید میکند.
دیگر ترکیبهای دوتایی لیتیم عبارتند از هالیدها (LiF، LiCl، LiBr، LiI) و سولفید (Li۲S)، سوپراکسید (LiO۲)، کربید (Li۲C۲). همچنین شمار بسیاری ترکیبهای غیرآلی هم از این عنصر شناخته شدهاست که در آن لیتیم با یونها آمیخته میشود و نمکهای گوناگونی را پدیدمیآورد که از آن جمله میتوان به بوراتها، آمیدها، کربنات، نیترات، بوروهیدرید (LiBH۴) و… اشاره کرد. چندین واکنشگر ناب آلی از لیتیم هم شناخته شدهاست که در آنها پیوند کووالانسی مستقیم میان کربن و لیتیم برقرار شده و کربانیون را ساختهاست. اینها بازها و هسته دوستهایی بسیار قویاند. در بسیاری از ترکیبهای آلی لیتیم، یونهای لیتیم دوست دارند به صورت خوشههای با تقارن بالا روی هم انباشته شوند. میتوان گفت این ویژگی برای کاتیونهای قلیایی معمول است.
ایزوتوپ
Li و Li دو ایزوتوپ پایدار لیتیم و دارای بیشترین فراوانی (۹۲٫۵٪) است. این دو ایزوتوپ پایدار در مقایسه با دو عنصر سبک و سنگین همسایگی خود یعنی هلیم و بریلیم، به صورت غیرطبیعی، انرژی پیوستگی هستهای پایینی به ازای هر هسته دارند. به جز دوتریوم و هلیم-۳، دو هستهٔ لیتیم انرژی پیوستگی کمتری به ازای هر هسته، نسبت به هر هستهٔ پایدار دیگری دارند. در نتیجهٔ این پدیده، عنصر لیتیم با اینکه وزن اتمی کمی دارد اما در سامانهٔ خورشیدی از دید فراوانی، در میان ۳۲ عنصر، رتبهٔ ۲۵ ام را دارد. هفت ایزوتوپ پرتوزا برای لیتیم پیدا شدهاست که پایدارترین آنها Li با نیمهعمر ۸۳۸ میلیثانیه و Li با نیمهعمر ۱۷۸ میلی ثانیهاست. دیگر ایزوتوپهای پرتوزا نیمهعمری کمتر از ۸٫۶ میلیثانیه دارند. ناپایدارترین ایزوتوپ این عنصر Li با نیمهعمر ۷٫۶ × ۱۰ ثانیهاست که در آن پروتون پرتوزایی میکند. ایزوتوپها لیتیم، بهطور طبیعی متشکل از ۲ ایزوتوپ پایدار Li-7 و Li-6 است که Li-7 فراوانتر است (وفور طبیعی ۵/۹۲٪). ۶ رادیوایزوتوپ هم برای آن وجود دارد که پایدارترین آنها، Li-8 با نیمه عمر ۸۳۸ هزارم ثانیه و Li-9 با نیمه عمر ۳/۱۷۸ هزارم ثانیه میباشد. مابقی ایزوتوپهای رادیواکتیو، نیمه عمرهایی کمتر از ۸٬۵ هزارم ثانیه داشته یا ناشناختهاند.
ایزوتوپهای لیتیم طی یک سری فرایندهای طبیعی مختلف از جمله تشکیل مواد معدنی (رسوب شیمیایی)، متابولیسم ،(جابجایی یونی ،(در برخی از خاکهای معدنی که Li-6 به Li-7 ترجیح داده شدهاست در مکانهای octahedral، لیتیم جایگزین منیزیم و آهن میشود)، hyperfiltration و دگرگونی صخرهها، بهطور اساسی شکسته میشوند.
Li یکی از عنصرهای بسیار کهن (یا به عبارت دقیق تر یکی از نوکلیدهای دیرینه) است که در جریان هستهزایی مهبانگ پدید آمدهاست. گمان آن میرود که مقدار اندکی از Li و Li در ستارهها پدید میآید اما به همان سرعتی که ایجاد میشود به همان سرعت، میسوزد و دوباره مصرف میشود. علاوه بر این احتمالاً مقدار اندکی از Li وLi در اثر بادهای خورشیدی و برخورد پرتوهای کیهانی با اتمهای سنگین تر و در نتیجه واپاشی ایزوتوپهایی مانند Be و Be پدید میآیند. هنگامی که لیتیم در جریان هستهزایی ستارهها پدید میآید دوباره سوخته و مصرف میشود. همچنین Li در ستارههای کربنی هم میتواند تولید شود.
فرایندهای طبیعی گوناگونی میتوانند ایزوتوپهای لیتیم را تولید کنند. از جملهٔ آنها میتوان به پدیدهای شیمیایی هنگام ساخت کانیها، دگرگشت و داد و ستدهای یونی اشاره کرد. یون لیتیم در کانیهای رسی هشت وجهی جایگزین منیزیم و آهن میشود.
پیشینهٔ شناسایی
شیمیدان برزیلی، خوزه بونیفاسیو جندراده نخستین کسی بود که کانی پتالیت (LiAlSi۴O۱۰) را شناسایی کرد. وی در سال ۱۸۰۰ میلادی در معدنی در یوتوی سوئد این کانی را پیدا کرد. هرچند، بر روی این کانی هیچ پژوهشی صورت نگرفت تا آنکه در سال ۱۸۱۷، شیمیدان سوئدی، یوهان آگوست آرفودسن که در آزمایشگاه یاکوب برسلیوس کار میکرد، دریافت که در این کانی عنصر تازهای وجود دارد. این عنصر تازه، ترکیبهایی همانند سدیم و پتاسیم را میپذیرفت تنها با این تفاوت که کربنات و هیدروکسید آن کمتر در آب حل میشد. برسلیوس این مادهٔ قلیایی را لیتیون (lithion/lithina) نام نهاد، برگرفته از واژهٔ یونانی لیتوس (λιθoς) به معنی «سنگ»؛ او به این دلیل این نام را برگزید تا نشان دهد که این عنصر را از یک کانی جامد بدست آوردهاست برخلاف پتاسیم که در میان خاکستر گیاهان شناسایی شد و همچنین در خون حیوانات هم به فراوانی یافت میشد. همچنین او به فلز درون ماده نام «لیتیم» را داد.
پس از چندی، آرفودسن نشان داد که این عنصر در کانیهای اسپودومن و لپیدولیت هم وجود دارد. در ۱۸۱۸ کریستین گملین نخستین کسی بود که دریافت نمکهای لیتیم شعله را به رنگ قرمز روشن درمیآورند. هم گلمین و هم آرفودسن هر دو تلاش کردند تا لیتیم پالوده بدست آورند و عنصر را از نمکهایش جدا کنند که هر دو ناکام ماندند. تا سال ۱۸۲۱ کسی نتوانست لیتیم را پالوده بدست آورد تا اینکه شیمیدان انگلیسی، ویلیام توماس برند با کمک فرایند برقکافت بر روی لیتیم اکسید این عنصر را از ترکیبش بیرون کشید. برند نخستین کسی نبود که از برقکافت برای جداسازی بهره میبرد، پیش از او هم هامفری دیوی فرایندی همانند را برای جداسازی فلزهای قلیایی پتاسیم و سدیم با موفقیت انجام داده بود. همچنین برند توضیح داد که نمکهایی از لیتیم مانند کلرید و احتمالاً لیتیا (لیتیم اکسید) دارای ۵۵٪ فلزند و برآورد کرد که وزن اتمی لیتیم 9.8 g/mol باشد (مقدار درست آن نزدیک به 6.94 g/mol است). در ۱۸۵۵ روبرت بونزن و آگوستس متیسن از راه برقکافت لیتیم کلرید مقدارهای بیشتری از این عنصر را جدا کردند. ادامهٔ تلاشها برای جداسازی بیشتر لیتیم از نمکهایش باعث دست یافتن به روش صنعتی این جداسازی در سال ۱۹۲۳ توسط یک تولیدکنندهٔ آلمانی به نام Metallgesellschaft AG شد. این تولیدکننده برای این هدف به برقکافت آمیختهای از لیتیم کلرید و پتاسیم کلرید پرداخت.
کاربرد
لیتیوم یکی از اجزاء مهم در باتریهای قابل شارژ است که در تلفنهای همراه، رایانههای دستی و خودروهای برقی مورد استفاده قرار میگیرد. در حال حاضر، آلیاژی از لیتیوم و آلومینیوم در صنایع هواپیماسازی مورد استفاده قرار می گیرد که سبک، قابل انعطاف، محکم و مقاوم است.
علاوه بر این، لیتیوم نیروی کششی زیادی دارد و به دلیل وزن کم آن گزینه بسیار مناسبی برای باتریهای کم وزن و پرانرژی است. همچنین، این ماده معدنی همراه با سرب آلیاژی را تولید میکند که در ساختن بلبرینگ چرخهای قطار استفاده میشود.
از دیگر مصارف لیتیوم میتوان به کاربرد آن در صنعت داروسازی اشاره کرد.
با این همه در مورد مصرف لیتیوم هم در صنایع و همچنین در داروسازی توجه به یک نکته بسیار مهم میباشد. مرز میان سودمند بودن این ماده و سمی بودنش برای انسان و محیط زیست بسیار بسیار نازک و شکنندهاست.
تولید لیتیم در جهان و ایران
شیلی با ۸ میلیون تن ذخایر لیتیوم بیشترین میزان ذخایر این ماده معدنی را در جهان در اختیار دارد. پس از آن استرالیا و آرژانتین به ترتیب با دارا بودن ۲میلیون و ۷۰۰هزار تن و ۲میلیون تن ذخایر لیتیوم در رتبههای دوم و سوم جهان قراردارند.
لیتیوم در ایران به تولید و فناوری نرسیده و اقتصادی بودن اکتشاف و فرآوری لیتیوم بسیار پراهمیت است چرا که فرآوری و دانش فنی مربوط به آن در اختیار کشورهای پیشرفته ای مانند ژاپن و کرهجنوبی میباشد. یکی از سرمایهگذاریهای بلند مدت برای به دست گرفتن بازار خودروهای الکتریکی، توجه به بازار لیتیوم در ایران است.
ایران جزو معدود کشورهایی است که به مقادیر مناسبی از ذخایر عناصر نادر خاکی و فلزات با ارزش دسترسی دارد که بعد از فرایند اکتشافات پهنههای معدنی که از سال ۱۳۹۳ آغاز شد، شناسایی این ذخایر از جمله اتفاقاتی بود که در این اکتشافات رخ داد و فلزات کمیابی مانند فلز لیتیوم در مناطق مختلف کشور در مقادیر مناسب رصد شد که حالا متصدیان معدنی به دنبال آغاز استحصال صنعتی این ماده هستند و اکنون آن را در فاز نیمه استحصال صنعتی قرار دادند.
لیتیوم در سال ۱۳۹۶ در بازارهای جهانی به صورت فلز، حدوداً با قیمت ۱۶۰ دلار به ازای هر کیلوگرم به فروش میرسد، همچنین کنسانتره آن با کیفیتهای «درجه کیفیت ساخت باتری (battery grade)»، «کربنات لیتیوم» و کنسانتره رایج عرضه میشود که به ترتیب در حدود ۲۰ هزار دلار در هر تن، ۹٫۳۹ دلار در هر کیلوگرم و پنج دلار در هر کیلوگرم به فروش میرسد.
جدا از بحث نبود تکنولوژی استخراج لیتیوم در ایران، با توجه به چند برابر شدن بازار لیتیوم از سال ۲۰۱۵، قیمت لیتیوم برای صنایعی که تک مصرف هستند تا ۱۰ برابر افزایش یافتهاست. همچنین پیشبینی میشود که تا سال ۲۰۲۵ قیمت باتریهای لیتیمی به ۱۰۰ دلار به ازای هر کیلووات ساعت انرژی میرسد. باتوجه به این امر در صورت عدم استفاده از منابع داخلی، حضور خودروهای الکتریکی در بازار ایران و ساخت داخلی آن تحت تأثیر جدی قرار خواهد گرفت.
جستارهای وابسته
- دیلیتیم
- رده:ترکیبهای لیتیم
- باتری لیتیوم-یون
- لیتیم (پزشکی)
منابع
- ↑ http://www.webelements.com/webelements/elements/text/Li/index.html WebElements.com - Lithium http://environmentalchemistry.com/yogi/periodic/Li.html EnvironmentalChemistry.com - Lithium
- ↑ http://environmentalchemistry.com/yogi/periodic/Li.html EnvironmentalChemistry.com - Lithium
- ↑ Krebs, Robert E. (2006). The History and Use of Our Earth's Chemical Elements: A Reference Guide. Westport, Conn.: Greenwood Press. ISBN 0-313-33438-2.
- ↑ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
- ↑ Densities for all the gaseous elements can be obtained at Airliquide.com
- ↑ "Nitrogen, N2, Physical properties, safety, MSDS, enthalpy, material compatibility, gas liquid equilibrium, density, viscosity, inflammability, transport properties". Encyclopedia.airliquide.com. Archived from the original on 21 July 2011. Retrieved 2010-09-29.
- ↑ "Coefficients of Linear Expansion". Engineering Toolbox.
- ↑ Tuoriniemi, J; Juntunen-Nurmilaukas, K; Uusvuori, J; Pentti, E; Salmela, A; Sebedash, A (2007). "Superconductivity in lithium below 0.4 millikelvin at ambient pressure". Nature. ۴۴۷ (۷۱۴۱): ۱۸۷–۹. Bibcode:2007Natur.447..187T. doi:10.1038/nature05820. PMID ۱۷۴۹۵۹۲۱.
- ↑ Struzhkin, V. V. ; Eremets, M. I. ; Gan, W; Mao, H. K. ; Hemley, R. J. (2002). "Superconductivity in dense lithium". Science. ۲۹۸ (۵۵۹۶): ۱۲۱۳–۵. Bibcode:2002Sci...298.1213S. doi:10.1126/science.1078535. PMID ۱۲۳۸۶۳۳۸.
- ↑ Overhauser, A. W. (1984). "Crystal Structure of Lithium at 4.2 K". Physical Review Letters. ۵۳: ۶۴–۶۵. Bibcode:1984PhRvL..53...64O. doi:10.1103/PhysRevLett.53.64.
- ↑ Schwarz, Ulrich (2004). "Metallic high-pressure modifications of main group elements". Zeitschrift für Kristallographie. ۲۱۹ (۶–۲۰۰۴): ۳۷۶. Bibcode:2004ZK....219..376S. doi:10.1524/zkri.219.6.376.34637.
- ↑ Hammond, C. R. (2000). The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press. ISBN 0-8493-0481-4.
- ↑ Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. ISBN 0-19-850341-5.
- ↑ Kamienski, McDonald, Daniel P. ; Stark, Marshall W. ; Papcun, John R., Conrad W. (2004). "Lithium and lithium compounds". Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. doi:10.1002/0471238961.1209200811011309.a01.pub2.
- ↑ "XXIV. ?On chemical analysis by spectrum-observations". Quarterly Journal of the Chemical Society of London. ۱۳ (۳): ۲۷۰. 1861. doi:10.1039/QJ8611300270.
- ↑ Krebs, Robert E. (2006). The history and use of our earth's chemical elements: a reference guide. Greenwood Publishing Group. p. ۴۷. ISBN 0-313-33438-2.
- ↑ Institute, American Geological; Union, American Geophysical; Society, Geochemical (1 January 1994). "Geochemistry international". ۳۱ (۱–۴): ۱۱۵.
- ↑ Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. pp. ۹۷–۹۹. ISBN 0-08-022057-6.
- ↑ Beckford, Floyd. "University of Lyon course online (powerpoint) slideshow". Archived from the original on 4 November 2005. Retrieved 2008-07-27.
definitions:Slides 8–10 (Chapter 14)
- ↑ Sapse, Anne-Marie and von R. Schleyer, Paul (1995). Lithium chemistry: a theoretical and experimental overview. Wiley-IEEE. pp. ۳–۴۰. ISBN 0-471-54930-4.
- ↑ "Isotopes of Lithium". Berkeley National Laboratory, The Isotopes Project. Archived from the original on 13 May 2008. Retrieved 2008-04-21.
- ↑ File:Binding energy curve - common isotopes.svg shows binding energies of stable nuclides graphically; the source of the data-set is given in the figure background.
- ↑ Numerical data from: Lodders, Katharina (2003). "Solar System Abundances and Condensation Temperatures of the Elements". The Astrophysical Journal. 591 (2): 1220–1247. doi:10.1086/375492. ISSN 0004-637X. Graphed at File:SolarSystemAbundances.jpg
- ↑ Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Archived from the original on 20 December 2018. Retrieved 2008-06-06.
- ↑ Asplund, M.; et al. (2006). "Lithium Isotopic Abundances in Metal-poor Halo Stars". The Astrophysical Journal. ۶۴۴: ۲۲۹. arXiv:astro-ph/0510636. Bibcode:2006ApJ...644..229A. doi:۱۰٫۱۰۸۶/۵۰۳۵۳۸.
- ↑ Chaussidon, M.; Robert, F.; McKeegan, K.D. (2006). "Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived Be and for the possible presence of the short−lived nuclide Be in the early solar system" (PDF). Geochimica et Cosmochimica Acta. ۷۰ (۱): ۲۲۴–۲۴۵. Bibcode:2006GeCoA..70..224C. doi:10.1016/j.gca.2005.08.016. Archived from the original (PDF) on 18 July 2010. Retrieved 8 November 2012.
- ↑ Denissenkov, P. A.; Weiss, A. (2000). "Episodic lithium production by extra-mixing in red giants". Astronomy and Astrophysics. ۳۵۸: L49–L52. arXiv:astro-ph/0005356. Bibcode:2000A&A...358L..49D.
- ↑ Seitz, H.M.; Brey, G.P.; Lahaye, Y.; Durali, S.; Weyer, S. (2004). "Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes". Chemical Geology. ۲۱۲ (۱–۲): ۱۶۳–۱۷۷. doi:10.1016/j.chemgeo.2004.08.009.
- ↑ "Petalite Mineral Information". Retrieved 10 August 2009.
- ↑ "Lithium:Historical information". Retrieved 10 August 2009.
- ↑ Weeks, Mary (2003). Discovery of the Elements. Whitefish, Montana, United States: Kessinger Publishing. p. ۱۲۴. ISBN 0-7661-3872-0. Retrieved 10 August 2009.
- ↑ "Johan August Arfwedson". Periodic Table Live!. Archived from the original on 7 اكتبر 2010. Retrieved 10 August 2009.
- ↑ "Johan Arfwedson". Archived from the original on 5 June 2008. Retrieved 10 August 2009.
- ↑ van der Krogt, Peter. "Lithium". Elementymology & Elements Multidict. Retrieved 2010-10-05.
- ↑ Clark, Jim (2005). "Compounds of the Group 1 Elements". Retrieved 10 August 2009.
- ↑ Per Enghag (2004). Encyclopedia of the Elements: Technical Data – History – Processing – Applications. Wiley. pp. ۲۸۷–۳۰۰. ISBN 978-3-527-30666-4.
- ↑ <Please add first missing authors to populate metadata.> (1818). "The Quarterly journal of science and the arts" (PDF). The Quarterly Journal of Science and the Arts. Royal Institution of Great Britain. ۵: ۳۳۸. Retrieved 2010-10-05.
- ↑ "Timeline science and engineering". DiracDelta Science & Engineering Encyclopedia. Archived from the original on 5 December 2008. Retrieved 2008-09-18.
- ↑ Brande, William Thomas; MacNeven, William James (1821). A manual of chemistry. p. ۱۹۱. Retrieved 2010-10-08.
- ↑ Green, Thomas (11 June 2006). "Analysis of the Element Lithium". echeat.
- ↑ «لیتیوم؛ رشد تولید جهانی و کاهش ذخایر». imidro.gov.ir. دریافتشده در ۲۰۱۹-۱۲-۰۱.
- ↑ Carfuture. «وضعیت لیتیوم در ایران». carfuture.ir. دریافتشده در ۲۰۱۹-۱۲-۰۱.
- ↑ «ایران سراغ فلز ۱۶۰ هزار دلاری رفت». ایسنا. ۲۰۱۸-۰۱-۱۶. دریافتشده در ۲۰۱۹-۱۲-۰۱.
- ↑ › statistics › battery-grade-lithium-carbonate-price «battery-grade-lithium-carbonate-price».
- ↑ Temple، James. «Why the electric-car revolution may take a lot longer than expected». MIT Technology Review (به انگلیسی). دریافتشده در ۲۰۱۹-۱۲-۰۱.